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LALS is a computer program for the refinement of molecular structures. It is primarily intended for helical 
macromolecules but has applicability in other fields. The refinement uses as data, X-ray structure factors, 
usually from fibre diffraction studies, and/or stereochemical information, including a comprehensive 
short-contact search. Various other geometrical constraints and restraints may be placed on the molecular 
conformation. As parameters of the refinement, LALS uses primarily dihedral angles about single bonds, 
assuming bond lengths and angles to be fixed and known. This greatly reduces the number of parameters 
from conventional atom-position refinements, as is necessary in systems where data are sparse. LALS has 
been used successfully to investigate the structures of a large number of more or less ordered polynucleotides, 
polysaccharides and other fibrous materials. 

1. Introduction 

Many macromolecules are not susceptible to conven- 
tional crystallographic structure determination because 
of their inability to form regular crystals. DNA, for 
example, has an irregular primary structure, is 
invariably associated with more or less disordered 
water and cations, and is a long, thin molecule which 
displays (in contrast to enzyme molecules) a very 
variable tertiary structure. All of these features con- 
tribute to the biological significance of DNA, and all 
of them are incompatible with the properties of a 
regularly formed crystal. 

Yet, diffraction studies have indeed played a great 
part in the determination of the structures of DNA 
and of a wide range of other biopolymers, through 
the application of two types of technique. Firstly, 
physical manipulation often allows the thread-like 
molecules to be extended and 'combed' so that the 
thread axes are parallel, and in some cases the sample 
then locally orders its orientations about these axes to 
form very small regions of three-dimensional crystal- 
linity. The consequent fibre or film X-ray diffraction 
data yield information about the ordering along the 
axes, and in favourable cases, about the local ordering 
in the planes perpendicular to these axes. However, 
even quite well-ordered samples rarely give sufficient 
data for conventional crystallographic analysis: the A 
form of DNA, for example, yields around 200 
measurable data but contains more than 250 crys- 
tallographically non-equivalent atoms (Arnott & 
Hukins, 1972). Less well-ordered materials often give 
little more quantitative data than the unit-cell 
dimensions and molecular axial symmetry. The second 
technique therefore is that of analysing the diffraction 
data in conjunction with other data or assumptions, 

so that the role of the former becomes that of 
discriminating between otherwise acceptable models. 

What additional information is available to 
supplement the diffraction data? A linear polymer with 
a regular secondary structure necessarily displays some 
helical symmetry and an important simplification of the 
problem results from the assumption that the confor- 
mation is indeed regular (within the limits of the 
determination) and that the asymmetric unit is therefore 
a single chemical repeat, rather than a complete turn of 
the helix. A-DNA, for example, displays an 11-fold 
screw axis relating the 11 residues in each helical turn. 
Since this symmetry is non-crystallographic, there is 
implicit the assumption that intramolecular rather than 
intermolecular forces determine the conformation: that 
is, that all 11 residues adopt the same conformation 
despite being in different intermolecular environments. 

Another important simplification can result from the 
assumption that bond lengths and angles in polymers 
have the same (or very nearly the same) values as in 
the corresponding monomers. In many cases the 
monomers are susceptible to conventional crystallo- 
graphic analysis, so that the atomic positions, and 
hence the bond lengths and angles, are known rather 
precisely. This reduces the solution of the polymer 
structure to that of determining dihedral angles about 
single bonds: one parameter per atomic position 
rather than three. Moreover, the conformations of 
some structural entities such as rigid rings (e.g. sugar 
rings, planar conjugated bases) may also be assumed 
to persist from monomer to polymer. It is therefore 
possible to prepare what we term the linked-atom 
description of the molecule: that is, one in which 
interatomic relations are described in terms of 
bond lengths, bond angles and dihedral angles. The 
linked-atom description of A-DNA, for example, 
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contains only six variables: five dihedrals along the 
sugar-phosphate backbone and one about the base- 
sugar bond. In addition to reducing the number of 
parameters to be determined, we can improve the 
data-to-parameter ratio by increasing the number of 
data. In the case of the A-DNA example this is not 
necessary since we now have something like 200 X-ray 
intensity data to six parameters, but in many cases 
the number of these data which are quantifiable may 
be small or zero. Earlier modelling studies with 
linked-atom or similar approaches include those of 
Eyring (1932), Diamond (1965) and Arnott & 
Wonacott (1966). 

One source of additional data is provided by the 
values of the variable parameters in either monomers 
or similar polymers whose structures are known. Thus, 
for example, to solve a new nucleic acid structure we 
could survey the values of the corresponding dihedral 
angles in A-DNA and other solved structures, and 
require that our new structure display parameters 
varying minimally (in a least-squares sense) from those 
in our survey. While this method has some uses, 
particularly as a preliminary model-building step, it has 
the serious disadvantage of ignoring any 'new' features 
that may exist in our 'new' nucleic acid (unless they 
be purely differences in symmetry), and hence biasing 
the determination towards the earlier structures. 

A more useful source of stereochemical data is the 
requirement that the new model exhibit no over-short 
nonbonded interatomic distances. Whilst such a 
requirement could most accurately be embodied in a 
complete minimum-free-energy calculation, such 
methods are at present either too time-consuming, 
poor approximations, or both, and it is necessary in 
practice to compromise. Following Williams (1969) 
we have fotind a simple quadratic function to be 
satisfactory: that is, by varying our parameters we 
minimize C in: 

C = Y ki(s i - d i )  2 (1) 
i 

where s t is an interatomic distance in our model which 
is less than the desired minimum, di, and ki is a weight. 
The summation is over all such distances, termed 
contacts, and the number of terms will, if all goes well, 
decrease as the refinement proceeds. An extension of 
this procedure, detailed later, can be used to incorpor- 
ate hydrogen-bonding and coordination-bonding 
information. 

2. The L 4 L S  refinement program 

One important disadvantage of a refinement scheme 
such as is briefly outlined above, is the difficulty of 
writing a general computer program which has the 
capability of accommodating the wide range of bonding 
and packing patterns found in even quite chemically 

restricted fields of fibre structure analysis. Many such 
determinations, while interesting in their relations with 
other similar structures, are often not important 
enough to warrant the expense and trouble of re- 
programming. Early programs incorporating some of 
this flexibility include those of Diamond (1965) and 
Arnott & Wonacott (1966), but neither of these is 
easily applicable to very branched structures. 

The L A L S  program described here therefore had 
as one design objective the ability to cope with 
arbitrarily complicated systems without undue loss 
of efficiency. A summary of the logical flow in the 
program is shown in Fig. 1. The main refinement 
(shown by the solid arrows) is an iterative procedure 
because of the non-linear dependence of the data on 
the variables. Since these variables are most commonly 
angles, this non-linearity can be more pronounced 
than in conventional atomic position refinemenf and 
can sometimes lead to predicted shifts in parameters 
which are wrong in both sense and magnitude in the 
initial stages of refinement. For this reason the updating 
of parameters at the end of each cycle is subjected to 
some scrutiny and modification, of which further 
details are given later. 
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Fig. 1. Summary of the logical flows in LALS. The main refine- 
ment cycle is shown by solid arrows; broken arrows represent 
optional pathways. 
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3. Constrained least-squares refinement 

Although the principles of least-squares refinement are 
probably familiar to most conventional crystal- 
lographers, the use of Lagrange multipliers to impose 
constraints is not so widely known, nor are the implica- 
tions of non-independent variables, and we present 
therefore the basis of this method here. 

Given a system described by n variable parameters 
,p j, m observations d~ of this system, and knowledge 
of the system sufficient to predict values c t corre- 
sponding to the di for a given set ofpj,  the least-squares 
assertion is that the best estimate of the pj which 
yields the observations is such that 7 t in (2) is a 
minimum. 

7 t -  ~ ( c i - d i )  2. (2) 
i= I 

If the pj are all independently variable, this implies: 

0 
- -  ~ = 0  j =  l ,n .  (3) 

To ease the solution of (3) we assume - and the 
implications of this assumption will be discussed l a t e r -  
that the functional dependence of the e i on the pj is 
known and linear: 

c i = ~, a U pj + Z i i = 1,m, (4) 
Y 

whence a U - Oci/Opj. Substituting (4) in (3), we obtain: 

~ ,  a i j ( c  i - -  d i )  : 0 j = 1,n. (5) 
i 

In practice, we generally make a guess at the values 
of the pj and wish to refine these to the values 
satisfying (3). If our trial set consists of p'k(k = 1,n) 
with corresponding c~, we have from (4): 

c i -- c~ = ~. aik(pk -- p~,) i = 1,m. (6) 
k 

The bracketed terms in (6) are thus the required shifts 
in the parameters, s k, so that the Pk which we are 
seeking are the sums of the p~, and the s k. 

Solving (6) for the e~ and substituting in (5) we 
obtain: 

~. ~. auaiks k = ~. aij(d t - c~) j = 1,n. (7) 
i k i 

Equations (7) are n linear equations in the n unknowns 
s k and may be solved by the usual methods. 

Commonly,  however, the pj are not independently 
variable, but subject to certain constraints on the sets 
of values they may take. If these constraints, r in 
number, can be expressed (or approximated) by 
equalities such as the following, they can be incor- 
porated into the least-squares process: 

gq=- ~. bcapj + yq=-O q =  l,r, (8) 
J 

whence bo. i =-- cggJOpj. 

The condition that 7 t in (2) be a minimum now no 
longer implies (3), but only the lesser condition: 

c~7 t 
~ dpj = 0. (9) 

/ 

In (9) the dpj are not independent but must satisfy 
the constraint relations, derived by differentiating (8): 

Y b c a d p j = O  q =  1,r. (10) 
J 

There are therefore only n -  r independent dpj. We 
can, however, multiply each equation (10) by a 
constant 40 and add these to (9) to obtain: 

j~. + Z 2 q b ¢  dpj = 0 .  (11) 

We choose values for the r constraints 2q, which are 
Lagrange undetermined multipliers, such that the 
coefficients of r of the dpj are zero. When we do this, 
however, the remaining dpj, numbering n -  r, are 
independent and therefore, analogously to (3), we may 
conclude that for all j :  

c3~U 
- - +  ~ 2 q b ~ = 0  j =  1,n. (12) 
Opj q 

Analogous to the unconstrained situation we thus have 
[cf equations (7)]: 

Z Z aisaiksk + Z 2qbca = ~ a i j ( d i -  c~) j = 1,n. 
i k q " (13) 

Also, our original constraint expressions in (8) can be 
evaluated as g~ at p~, yielding by subtraction from (8): 

--~. bqkS k = g~ q = 1,r. (14) 
k 

Together, (13) and (14) are (n + r) linear equations in 
the (n + r) variables s l . . . s  . and 21. . .2  r which are 
satisfied by a single set of values for the variables if 
the equations are all linearly independent. The solution 
of the equations then yields shifts s k which when added 
to the p~, give Pk, which [from (12)] are the values 
which minimize .Q: 

~=- ~F+ Z 2 q g q =  Z ( c i - d i ) 2  + ~'2qgq. (15) 
q i q 

To solve (13) and (14) we may restate them in matrix 
notation as: 

where the element L , ,  is Y.iai,  ai, (n rows and 
columns), of s, is s k (n elements), of h,  is Zi  ai,(di - e9 
(n elements), of G, ,  is --bok (n rows, r columns), of 

is 2q (r elements), of t, is gq (r elements), and where 
G is the transpose of G, and 0 is the zero matrix. Thus 
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the formal solution involves the inversion of the left- 
hand-side matrix and the premultiplication of the 
right-hand-side vector by this inverse to give the vector 
of s and 2. 

It is convenient, however, to permit the sets of 
equations (13) and (14) on occasion not to be linearly 
independent, that is, for there to be redundancies 
amongst either the variables or the constraints (of 
which instances will be presented later). In this case, the 
left-hand-side matrix will be singular, or, as invariably 
occurs in practice, nearly singular. To allow for this 
situation we first determine the eigenvalues and 
normalized orthogonal eigenvectors of the matrix. 
Restating (16), we have (17) and the eigenvalues and 
eigenvectors by definition satisfy (18) and (19): 

whence 

whence 

A . p  = b (17) 

A . V  i -~- i~ iV i  (18) 

A . V . B = V  

Vi " V / =  (~ij (19) 

V . ~ ¢ = I .  

Here v/are the (n + r) eigenvectors of A, fl~ the eigen- 
values, V is the matrix whose rows are the v~, B the 
diagonal matrix whose ith diagonal element is 1/fli, Jij 
is the Kronecker delta and I the unit matrix. 

The singularities will now be manifest as very small 
eigenvalues (relative to the others) and corresponding 
eigenvectors which are ill-defined and prone to greatly 
magnified error components. However, provided our 
singularities arise from consistent redundancies, as they 
will in a physically meaningful system, we may validly 
set these eigenvalues to zero, since the eigenvectors 
correspond only to the differences between physically 
identical parameters. Using this modified set of eigen- 
values and eigenvectors we then form the inverse of A 
using (20), which follows from (18) and (19) (see also 
Bickley & Thomson, 1964): 

A- '  = V. B.V.  (20) 

We may then solve for the parameter shifts and 
(incidentally) the constraint multipliers using: 

p = A - ' .  b. (21) 

In the above discussion certain approximations 
have been made which are worthy of comment. 
Firstly, it was assumed that the e~, the calculated 
values corresponding to the observations, are depen- 
dent linearly on the pj. Generally this is not so. 
However, commonly the first derivatives of the c/with 
respect to the pj are of the same sign and the same 
order of magnitude over the range of parameter 
values between the starting and refined model, and 
almost invariably these derivatives approach their 'best' 
values as the parameters approach those of the 'best' 

model. Thus, whilst the calculated shifts will not be 
exactly correct, they will lead to a 'better' model which 
can then be iteratively refined until the shifts are 
deemed insignificant. Exactly the same argument 
applies to non-linear constraint expressions, and in 
practice the two converge to a stable solution together. 

Lastly, it is often the case that the observations are 
not equally reliable and have quantifiable variances. 
In this case each term in the summation in (2) may 
be multiplied by a weight, wi, proportional to the 
inverse of the variance d i, and hence the elements of 
L and r in (16) will include w i in their summations. 

4. Generation of atomic coordinates 

LA L S  is designed to be used both in a 'crystallographic' 
context, in which both intramolecular and lattice- 
packing relations are considered, and an 'isolated 
entity' situation where the packing details are either 
undetermined (as occurs in various disordered packing 
arrangements) or irrelevant (as, for example, in 
studies of local conformation with purely stereo- 
chemical data). For this reason there is some redun- 
dancy in the available parameters for positioning 
and orienting molecules, the appropriate parameters 
being chosen according to context. L A L S  also is 
written primarily for use with helical molecules, and 
although this is reflected in the nomenclature, the 
program has been used with success on systems with 
no helical symmetry. 

Structures are described in the linked-atom method 
by relating each atom to those already defined by a 
distance, an angle, and a dihedral angle. The last two 
are refinable and normally can be chosen to correspond 
to actual bond angles and dihedrals about chemical 
bonds. Each linked-atom structure is then positioned 
relative to its local helix axis by another four refinable 
parameters. 

In the case of a crystallographic system, where 
intermolecular relations are important, another four 
refinable parameters are provided for each independent 
structure in the unit cell. 

In practice, this scheme has proved to be worth its 
seeming complexity, in that formal separation of 
molecular and lattice parameters allows the two to be 
refined either separately or jointly. 

The computational details of these calculations are 
presented in the technical report available from the 
authors. 

5. Constraints and restraints 

In a least-squares refinement such as L A L S ,  there 
commonly exist known relations between the varied 
parameters which must be satisfied in any refined 
model. 
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Some of these, which we term constraints, are 
inflexible requirements, that is, exact relations which 
must hold exactly for any valid solution. For example, 
the set of torsion angles along the backbone of one 
residue of an A-DNA helix must be such that the 'top' 
of the residue is continuous with the 'bottom' of the 
next. One way to treat this would be to find a (lesser) 
set of truly independent variables, but this would negate 
the physical significance of the parameters, which is the 
essence of L A L S .  We therefore formulate these 
constraints as linear or approximately linear functions 
of the parameters which are to be made zero, and 
apply them as already detailed. 

L A L S  has the built-in capability of applying the 
following types of constraint. 

(i) Coincidence of two 'atoms', of which either may 
be transformed with local or crystallographic sym- 
metry; used, for example, to maintain helix continuity 
and to close chemical ring systems. 

(ii) Direct linear relations between varied parameters; 
for example, the maintenance of a constant difference 
between two torsion angles about the same bond. 

(iii) Constraint of the distance between any two 
atoms. 

(iv) Constraint of the angle described by any three 
atoms. 

(v) Constraint of the dihedral angle described by any 
four atoms. 

(vi) Collinearity of any three atoms; used, for 
example, to control the bending of hydrogen bonds. 

(vii) Linear relations between atomic Cartesian or 
cylindrical coordinates; used for example to vary helix 
pitch or turn angle separately. 

(viii) Constraint of the inclination of the plane 

~ )c" 

B 

Fig. 2. A'B'C'  is a triangle of  dummy atoms in the structure 
shown. A " B " C "  is a result of applying helix symmetry to 
ABC. The necessary constraints to maintain helix continuity are 
coincidence constraints between A' and A", B' and B", and 
C' and C". 

described by any three atoms, used for example in 
polynucleotide work to control the base-plane slope 
(Arnott, Chandrasekaran & Selsing, 1975). 

Some of these imply more than one constraint; for 
example, the first type requires three constraints on the 
differences between the x, y and z coordinates of the 
atoms concerned. 

The commonest use of constraints in L A L S  is to 
make a helix backbone continuous or to close a ring. 
In the helix-backbone case, the structure is defined 
as the repeat unit plus three extra atoms of the follow- 
ing repeat (which are subsequently excluded from 
structure-factor calculations etc.). Coincidence con- 
straints are then placed on the three pairs of atoms 
which comprise one of these extra atoms transformed 
by one helix repeat operation and the corresponding 
atom in the original structure (Fig. 2). Three atoms are 
used to preserve full control over all the bond angles 
and torsion angles in the overlapped region. 

Notice that of these nine constraints, three are 
redundant (if the included angle is not varied) and 
cause singularity in the least-squares normal matrix. 
Whilst it is possible to select six of the nine which are 
linearly independent, the solution obtained is discrete 
but not unique and may not correspond to the fulfill- 
ment of the three unapplied constraints. 

Constraints imply an exact parametric relation. 
Often we do not wish to impose such a drastic 
limitation but to include information about the expected 
value of some function of the system, perhaps with an 
associated probable deviation. This can best be done by 
including such terms in the least-squares summation: 
that is, considering them as data to be fitted to. We 
term these restraints, and have included in L A L S  the 
facility for restraints analogous to the constraints listed 
as (iii), (iv), (v) and (viii) above. By far the commonest 
use for this is to maintain hydrogen bonds close to 
known or ideal lengths. 

An important type of restraint is that imposed on a 
single parameter, which we term elastic binding. Here 
we can build models whose conformation angles 
differ minimally from averages feund from surveys 
of known structures. This is often an important 
preliminary step in constructing models. It can easily 
be shown that this type of data adds only to the 
diagonal of the normal matrix and for this reason 
it has been termed matrix augmentation. For param- 
eters which have no 'preferred' value, binding 
to their current values has been found useful in pre- 
venting overshifting in poorly constrained situations: 
this adds to the normal-matrix diagonal but not to the 
right-hand-side vector. 

Another available restraint used in modelbuilding 
studies is fitting to a known model by distance 
restraints between corresponding atoms in the studied 
and the known model. This allows the determination 
of a model with standard bond lengths and angles 
differing minimally from a given model, a process we 
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term modelfitting. Modelfitting was used to generate the 
standard D N A  and R N A  coordinates published by 
Arnott, Smith & Chandrasekaran (1976). 

6. Non-bonded contacts 

We have already noted the desirability of automatically 
including distance restraints between atoms which are 
not bonded to each other and are too close. 

The practical problems involved in this are many. 
Biopolymers - such as A-DNA - often have high 
molecular symmetry so that the effective asymmetric 
unit contains quite a small number of atoms. But each 
of the 11 residues of the A-DNA helix is in a different 
environment and each therefore makes different 
intermolecular contacts. Of course, the very fact that a 
close to regular 11-fold helix is observed indicates that 
intrachain rather than interchain interactions are the 
dominant conformation-determining forces. Neverthe- 
less, the packing of chains and verification of the 
previous statement require that we make the investiga- 
tion, and indeed in many other cases we can see that 
the packing symmetry is reflected in the molecular 
conformation [e.g. in hyaluronic acid ( G u s s e t  al., 
1975; Winter, Smith & Arnott, 1975)]. 

The first, and indeed the overriding, problem is then 
that, a priori ,  there are a very large number of inter- 
atomic distances to be tested. Order-of-magnitude 
estimates are sufficient to show that this number is 
in the 106 to 10 l° range for many biopolymers, which 
makes the calculation prohibitively expensive. 

A second problem is that we must exclude from 
consideration interactions between atoms bonded to 
each other or to a common third atom. Although these 
distances are not normally functions of the varied 
parameters, the magnitude of their contributions to 
7 j is such that the important interactions are lost by 
numerical truncation. 

L A L S  deals with these problems by a variety of 
sorting and optimizing procedures so that, typically, the 
number of interatomic distances calculated is of the 
order of 105 , yielding some hundreds of 'useful' 
contacts after those unaffected by the varied parameters 
are eliminated. Bonding patterns are stored in a series 
of indexed look-up tables which reduce to an almost 
negligible level the time taken in checking for bonds 
and bonds to common atoms. 

We therefore end up with a list of over-short inter- 
atomic distances which are included in our least-squares 
optimization (1). The cutoff distances d i and the 
weights k i may be derived by various methods and 
the final results of refinements with different sets are 
not greatly dependent on the exact numbers used. In 
Table 1 we list a set which has been found satisfactory. 
These parameters were derived by setting di equal to 
the sum of the van der Waals  radii of the interacting 
atoms plus 0.02 nm and choosing k~ such that the 

Table 1. Parame te r s  f o r  contacts  

Interaction d i (nm) k i (nm -2) 

H-H 0.260 104 
C-C 0.360 103 
C-H 0.310 99 
N-N 0-330 171 
N-C 0-345 131 
N-H 0.295 129 
O-O 0.324 133 
O-N 0.327 148 
O-C 0.342 117 
O-H 0-292 114 
P-P 0.380 562 
P-O 0.352 257 
P-N 0.355 342 
P-C 0.370 260 
P-H 0.320 208 
S-O 0.352 138 
S-N 0.355 156 
S-C 0.370 124 
S-H 0.320 119 

interaction function best fits a conventional Bucking- 
ham non-bonded potential function over the range from 
the minimum energy distance down to the distance 
at which the energy exceeds the minimum energy by 
2.5 kJ mol-~ (approximately thermal energy). The radii 
and potential function parameters are taken from the 
work of Chandrasekaran & Balasubramanian (1969) 
and Lakshminarayanan & Sasisekharan (1969). 

Certain short contacts may of course correspond to 
known non-bonded attractive interactions, particularly 
hydrogen bonds and coordination bonds to metal 
atoms. To cope with these, we have included a crude 
but useful modification to our interaction function. 
In this, contacts lying between two inner limits are 
elastically bound to an ideal value within these limits 
with a higher weight. The effective implied 'energy 

[ 
~en~rgy' 

dAi dli dBi 
d ~  

di 

Fig. 3. The effective 'energy' function for attractive interactions 
(e.g. hydrogen bonds) is shown by the solid line. Interatomic 
separation d i is the usual cutoff distance, dAi and d~g are the 
inner limits between which the attractive interaction occurs ,  dli 
being the ideal separation. Notice that only the slope of the 
function has any meaning. 
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function' is shown schematically in Fig. 3. Although 
this may at first appear quite unrealistic, it should be 
realized that only the slope of the curve has any 
effect. Values for these inner limits and the weight are 
generally chosen to provide the desired degree of fit 
in a given problem. Use of limits 0.02 nm less and 
greater than the desired distance and a weight of 
1000 nm -2 has proved satisfactory in some practical 
applications. 

7. Structure factors 

The structure-factor calculation in L A L S  is quite 
conventional in most respects and need not be described 
in great detail. 

Two methods of calculating structure factors are 
provided, one using the usual trigonometric functions 
and the other using Bessel functions (Cochran, Crick 
& Vand, 1952). The latter has the advantage of 
separating molecular and crystal symmetry so that for 
situations where high molecular symmetry exists it is 
much faster. 

The Bessel routine also calculates (but currently does 
not refine against) continuous intensity along layer 
lines which often exist in fibre diffraction patterns; 
it is also able to separate Bragg and continuous 
contributions on the basis of various idealized patterns 
of disorder (Arnott, 1973). 

Scattering factors are included, calculated from the 
analytic approximation tabulated by Cromer & Waber 
(1974). Provision is made for including bonded 
hydrogen atoms with their heavy atom as a single 
scatterer and for using water-weighted scattering 
factors: that is, those relating to the scattering of 
atoms surrounded by a medium with a uniform 
electron density equal to the mean electron density of a 
water molecule. These have been successfully used for 
many structures in which relatively unstructured water 
fills much of the unit-cell voids, such as is the case 
for most nucleic acids under physiologically appropriate 
conditions of salt concentration and humidity. This 
method was introduced by Langridge, Wilson, Hooper, 
Wilkins & Hamilton (1960), and modified and detailed 
by Fuller (1961) and Arnott & Hukins (1973). The 
latter two, however, contain an error corrected here. 

Water-corrected scattering factors, g(p) where p is 
the reciprocal-space radius of a reflection, are related 
to normal scattering factors f(p) according to the 
principle of Babinet, by: 

g ( p ) = f ( p ) -  Vamp(p). (24) 

V is the volume of the scatterer, o is the electron 
density of water (298-4 nm -3) and ~p(p) is the scattering 
factor of a uniformly dense one-electron sphere of 
radius R, given by (25) (James, 1965). 

~p(p) = 3{[sin(2nRp)- (2nRp) cos(2nRp)] / (2~Rp)31.  
(25) 

To calculate V and ¢ we assume van der Waals 
radii R as follows: H 0.12, C 0.17, N 0-15, O 0.14, 
P 0.19, S 0.17 rim. 

For atoms with n attached hydrogen atoms not 
separately included, the uncorrected scattering factors 
are taken as the sum of the heavy atomf(p) and n times 
the hydrogen f ( p ) .  To correct these combined scattering 
factors for water we modify V in (24) to include the 
volume of the hydrogen atoms. Because the spheres of 
the hydrogen atoms are partially embedded in that of 
the central atom, the added volume can be shown to 
be given by (26). 

1 3 fl(sin 2 fl + 2)] v H = xnrH[2 + cos 

l 3[2 -- COS it(sin 2 t~t + 2)1 (26) 
- -  ~nr A 

where st = arccos[(r 2 + b ~ - r~)/2rAb],  fl = 
arccos[(r 2 + b 2 - r2)/2rHbl.  The radius of the heavy 
atom is r, ,  of hydrogen r H (values as given above), 
b is the bond length (taken as C 0.109, N 0.101, 
O, 0.096 nm). 

Thus in (24) we add nv~ to V and to calculate ~p 
use an R corresponding to a sphere of volume V. 

The terms included in (2) for the X-ray data are 
[sF o - F c e x p ( - b p 2 / 4 ) ] ,  where F,, is an observed 
structure amplitude on an arbitrary scale, s is a refin- 
able scale factor, F c is the corresponding calculated 
amplitude, and b is a refinable isotropic attenuation 
factor. In the case of reflections which overlap (a 
common problem in fibre diffraction) F c is taken as the 
square root of the summed calculated intensities of 
the contributing reflections. 

8. Solution of  the normal equations 

As has been already noted, the normal matrix is 
commonly singular and is therefore as a first step 
decomposed to its eigenvalues and eigenvectors. The 
method of Smith, Boyle, Garbow, Ikebe, Klema & 
Moler (1974) embodied in the E I S P A C K  package is 
used in L A L S  and has proved both reliable and 
economical. 

The eigenvalues are then scanned for redundancies, 
expressed as values some orders of magnitude less than 
the next larger ones, and these are eliminated. The 
matrix is then inverted and shifts in the parameters 
are calculated. 

Because of non-linearity, it is generally dangerous to 
use very large shifts: typically we find about 20 ° in 
angular variables is a useful maximum. For this reason 
several modifications may be made to the shifts before 
they are applied. These are scaling to a maximum, 
damping, and constraint optimization. 

Scaling involves reducing each shift by a constant 
factor so that the largest scaled shift is some specified 
figure, such as 20 ° . If all shifts are already less than 
this, no scaling is done. In practice, two maxima are 
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used, one for angular and one for translational param- 
eters. Scaling is a crude method, but it is fast and 
works well in controlling the early stages of refinement. 

Damping is the multiplication of every shift by a 
fixed factor less than unity. It is occasionally useful 
when the refinement oscillates. 

Constraint optimization implies a further scaling of 
all the shifts by a constant factor (possibly greater 
than unity) such that the solution best satisfies the 
Lagrange constraints. In practice, this is achieved by 
running trial solutions using the calculated shifts and 
twice the calculated shifts as far as the constraint 
calculation, fitting a quadratic to the three (zero, one 
and two times shifts) points, and taking the minimum 
of the quadratic as the best estimate of the shift 
scaling factor. This procedure proves worthwhile in 
poorly constrained situations, but has the disadvantage 
in well constrained systems of demanding very small 
shifts. 

The modified shifts are added to the original param- 
eter values and, subject to user control, refinement 
continues iteratively with the coordinate calculation. 

The above treatment also relies on a knowledge 
of N. Because of the contact analysis, it is far from 
trivial to assign a value to N. Obviously, the fact that 
some contact does not exist, or has been relieved, is a 
point in favour of the final model, yet assigning a value 
to N in the usual way increases the estimated error as 
fewer contacts remain. We have found no completely 
satisfactory solution to this problem, but have used as a 
pragmatic estimate the larger of the number of un- 
relieved contacts and the number of atoms in the 
asymmetric unit. 

We therefore can in L A L S  get estimates of the 
uncertainties of our refined parameters. However, the 
more useful uncertainties are those of atomic positions. 
Because the effects on atomic positions of varying 
different parameters are correlated, it is necessary to 
use not only the parameter variances but also the 
pairwise covariances, which are derived from the 
inverted normal matrix in an analogous way. It is of 
note that the volume of calculation resulting is 
considerable. 

9. Uncertainties 

No refinement system can be considered complete 
without some indication of the precision of its results. 

The theory of least-squares shows that the standard 
deviation, a i, of the refined (to convergence) parameter 
Pi is given by (27). 

a. z (27) = mii  

where m i i is the appropriate diagonal element of the 
inverted normal matrix I A -t in (20)1. This depends, 
as indeed does the validity of least-squares analysis, 
on two conditions: firstly, that the weighted errors of 
the data must be random (i .e.  a finite subset of a 
normally distributed population), and secondly that 
each datum must be weighted by the reciprocal of 
its estimated variance, so that the mean value of the 
weighted squared differences between observed and 
calculated values is unity. 

If the second condition is not met, that is, if the 
weights are proportional but not equal to the recipro- 
cals of the variances, we can estimate the best value 
of the constant of proportionality as 1Iv (28). 

V = )" Wi(¢ i --  d i ) 2 / N  (28) 

where w i are the applied weights to data d/, c i being 
the calculated value at convergence, and N is the excess 
of data over net varied parameters. Combining these 
results we obtain: 

cr i = ( m i i v )  t j2. (29) 

Unfortunately, perhaps, this relies on the random- 
error condition and in doing so prevents us examining 
the value of c as a test of this condition being satisfied. 

10. Applications 

It is beyond the scope of the present paper to list all 
past and possible applications of L A L S .  Since, 
however, many published instances of its use include 
useful practical details, we indicate some of them here. 

Nucleic acid and polynucleotide structures have been 
extensively studied in this laboratory. X-ray data alone 
were used in studies by Arnott & Selsing (1974), 
Arnott, Chandrasekaran, Hukins, Smith & Watts 
(1974) and Selsing, Arnott & Ratliff (1975)on unusual 
DNA double helices, while a combination of modelling 
and comparison with continuous transform was 
employed for polyinosinic acid (Arnott, Chandrase- 
karan & Marttila, 1974). Several structures for which 
X-ray data were scarce or absent were investigated 
largely on the basis of their contact properties; these 
include C-DNA (Arnott & Selsing, 1975) and several 
triple-stranded polynucleotides (Arnott, Bond, Selsing 
& Smith, 1976). The structure of polycytidylic acid, 
a single-stranded polymer, was solved using a joint 
X-ray and contact refinement by Arnott, Chandrase- 
karan & Leslie (1976). Several non-helical model 
nucleic acid systems have also been investigated with 
L A L S ,  such as Alden & Arnott's (1975) study of 
drug-molecule interaction in B-DNA. 

In the polysaccharide field, L A L S  has helped the 
elucidation of several glycosaminoglycan structures 
and of some plant polysaccharides. X-ray data alone 
were used for keratan sulfate (Arnott, Guss, Hukins, 
Dea & Rees, 1974), t-carrageenan (Arnott, Scott, Rees 
& McNab, 1974) and agarose (Arnott, Fulmer, Scott, 
Dea, Moorhouse & Rees, 1974). Hyaluronic acid has 
been extensively studied with joint X-ray and contact 
refinements ( G u s s e t  al . ,  1975; Winter et  a l . ,  1975; 
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Winter & Arnott, 1977), which have permitted the 
localization of cations and water molecules. A similar 
study on a bacterial polypentasaccharide has also been 
performed (Moorhouse, Winter, Arnott & Bayer, 
1977). 

Other applications have included the synthetic 
polymer poly(tetramethylene terephthalate) (Hall & 
Pass, 1976) and the use of modelfitting for the fitting 
of standard dimensions to measured coordinates for 
the coenzyme nicotinamide adenine dinucleotide 
bound to lactate dehydrogenase (White, 1976). 

11. Program specifications 

L A L S  is an overlaid Fortran program of about 7000 
statements. It is coded specifically for a local variant 
of the CDC RUN compiler, but portability has 
been considered in its construction and no great 
difficulty is anticipated in adapting it for IBM 370 or 
similar equipment. 

Performance figures are very problem dependent, 
but typical figures on our CDC 6500 computer 
under the Purdue MACE operating system are from 
10 to 100 processor seconds per refinement cycle, with 
use of the order of 100 000 octal words of storage. 

Further technical details and information on distri- 
bution of the program are available from the authors. 

The L A L S  system has been developed over several 
years in close conjunction with many colleagues in 
this and other laboratories, to all of whom we express 
our thanks for their suggestions and comments. 

Development of L A L S  was supported by grants 
from the National Science Foundation and the 
National Institutes of Health of the US. 
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